SOLARIS-X

🛰️ SOLARIS-X: Advanced Space Weather Prediction System

Python TensorFlow LightGBM License Status

World-class machine learning system for geomagnetic storm prediction using 29 years of space weather data


🌟 OVERVIEW

SOLARIS-X is an advanced ensemble machine learning system designed for real-time geomagnetic storm prediction. Built with 29 years of space weather data (1996-2025) and 79 physics-informed features, it achieves 96.5% AUC with superior storm detection capabilities.

🎯 Key Achievements


📊 PERFORMANCE METRICS

Model AUC Precision Recall F1-Score Best For
Meta-Ensemble 0.9646 0.4862 0.6784 0.5664 Storm Detection
LightGBM Baseline 0.9671 0.6655 0.4904 0.5647 High Precision

🎖️ Meta-Ensemble selected for production - Superior storm detection critical for space weather operations


🏗️ SYSTEM ARCHITECTURE

🔬 Core Components

  1. Advanced Feature Engineering
    • 29-year dataset (257,232 samples)
    • 79 physics-based predictors
    • Temporal lag features (1-24 hours)
    • Solar cycle & seasonal patterns
  2. Ensemble Architecture
    • LightGBM: Gradient boosting baseline
    • Bidirectional GRU: Temporal sequence modeling
    • Meta-Learner: Combines predictions optimally
  3. Production Pipeline
    • Memory-optimized data processing
    • Robust scaling & preprocessing
    • Model persistence & versioning
    • Real-time inference capability

📈 DATASET & FEATURES

🛰️ Space Weather Data Sources

⚡ Top Physics Features

  1. Kp-index - Geomagnetic activity indicator
  2. IMF Magnitude - Interplanetary magnetic field strength
  3. Plasma Beta - Solar wind plasma parameter
  4. AE Index - Auroral electrojet activity
  5. Solar Cycle Phase - Long-term solar variability

🚀 QUICK START

Installation

Clone repository

git clone https://github.com/yourusername/SOLARIS-X.git
cd SOLARIS-X

Create virtual environment

python -m venv venv

Activate virtual environment

#Windows:
venv\Scripts\activate

#Linux/Mac:
source venv/bin/activate

Install dependencies

pip install -r requirements.txt

Training Pipeline

Run complete training pipeline

python scripts/training/complete_pipeline.py

Individual model training

python scripts/training/test_lightgbm.py
python scripts/training/test_neural_network.py

Quick Prediction Example

import joblib
import pandas as pd
import numpy as np

Example space weather features
features = {
'Kp_index': 3.5,
'IMF_Magnitude_lag_12h': 7.2,
'Plasma_Beta': 0.8,
'AE_index': 150.0,
'Solar_Cycle_Phase': 0.6
# ... additional features required
}

print("SOLARIS-X Space Weather Prediction System")
print("Geomagnetic Storm Prediction: Ready for deployment")

📁 PROJECT STRUCTURE

Core Directories

📊 Data Pipeline

🤖 Training System

💾 Model Management

📈 Results & Analysis

📋 Configuration

Key Features


🏗️ Architecture Highlights

Note: Files marked as “(excluded)” are not tracked in git due to size constraints but are generated during training.


🔬 SCIENTIFIC METHODOLOGY

🎯 Research Approach

📊 Evaluation Protocol


🌍 APPLICATIONS

🛰️ Operational Use Cases

🎓 Research Applications


🔧 TECHNICAL SPECIFICATIONS

💻 System Requirements

🛠️ Key Dependencies

lightgbm==4.6.0
tensorflow-cpu==2.20.0
scikit-learn==1.3.0
pandas==2.0.3
numpy==1.24.3
matplotlib==3.7.1
seaborn==0.12.2

👨‍💻 AUTHOR

Sumanth - Space Weather & Machine Learning Research


🏆 ACHIEVEMENTS


📄 LICENSE

This project is licensed under the MIT License.


🙏 ACKNOWLEDGMENTS


### 🌟 **SOLARIS-X: Protecting Earth from Space Weather** 🌟 *Built with ❤️ for the space weather research community* **[⭐ Star this repository](https://github.com/Sumanth1410-git/SOLARIS-X)** if it helps your research!